THE CRYSTAL AND MOLECULAR STRUCTURE OF μ-OXALATOBIS[DI η^{5}-CYCLOPENTADIENYL)TITANIUM]

FRANK BOTTOMLEY*, IVAN J.B. LIN and PETER S. WHITE
Department of Chemistry, University of New Brunswich, Fredericton, New Brunswick E3B 6E2 (Canada)
(Received November 21st, 1980)

Abstract

Summary μ-Oxalatobis[di- $\left(\eta^{5}\right.$-cyclopentadienyl)titanium $],\left[\mu-\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)\left\{\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Ti}\right\}_{2}\right]$, $0.5\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{O}$ crystallises in the orthorhombic space group Pben with a 17.228(13), $b 12.224(13), c 30.309(23) ~ \AA$ and $Z=12$. The final R was 0.061 (R_{w} 0.104). The oxalato group acts as a planar tetradentate bridging ligand, with the Ti atoms displaced in a cis fashion out of the $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$ plane. The reason for this displacement is analysed in terms of σ and π interaction between the metal and ligand, and steric contacts between the Cp rings. Comparison with the isoelectronic $\left[\mu-\left\{\mathrm{C}_{2}\left(\mathrm{~N}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}-p\right)\right)_{4}\right\}\left\{\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Ti}\right\}_{2}\right]$ is made.

Introduction

As part of an investigation of the reactions between $\mathrm{C}_{x} \mathrm{O}_{y}$ compounds and derivatives of $\operatorname{di}\left(\eta^{5}\right.$-cyclopentadienyl)titanium $\left(\mathrm{Cp}_{2} \mathrm{Ti}, \mathrm{Cp}=\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ or μ - $\left(\eta^{5}\right.$: η^{5}-fulvalene)bis (η^{5}-cyclopentadienyltitanium) [1,2], which has as its goal the reductive coupling of CO_{2} to $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$, we have prepared and structurally analysed the bridging oxalato complex $\left[\mu-\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)\left\{\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Ti}\right\}_{2}\right]$ (abbreviated as $\left.\left[\left(\mathrm{Cp}_{2} \mathrm{Ti}\right)_{2}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)\right]\right)$ which would be the simplest product of such a coupling reaction.

Experimental

$\left[\left(\mathrm{Cp}_{2} \mathrm{Ti}\right)_{2}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)\right]$ was obtained by dissolving $\left[\left(\mathrm{Cp}_{2} \mathrm{TiCl}\right)_{2}\right][3]$ in deoxygenated water, filtering the solution and adding a four-fold molar excess of $\mathrm{K}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ also dissolved in water. After filtering and drying of the resultant purple precipitate in vacuo at $100^{\circ} \mathrm{C}$ for 18 h , crystals suitable for X-ray work were obtained by slow evaporation of a solution of the complex in a $2: 1 \mathrm{mix}-$ ture of tetrahydrofuran and ether. In solution the paramagnetic complex ($g=$ 1.979) was rapidly decomposed by air; the crystals were only moderately air
sensitive. Photographic and diffractometer examination of the crystals readily yielded the space group and cell dimensions; orthorhombic, Pbcn with a $17.228(13), b 12.224(13), c 30.309(23) \AA, Z=12$. Only after the discovery of 0.5 molecules of ether, $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{O}$, per molecule of $\left[\left(\mathrm{Cp}_{2} \mathrm{Ti}\right)_{2}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)\right]$ in the crystal could D_{x} (1.39) be reconciled with D_{M} (1.44), using the formula $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{O}_{4.5} \mathrm{Ti}_{2}, M=481.3$. Microanalysis, performed on crystals obtained from

TABLE 1
FRACTIONAL ATOMIC COORDINATES $\times 10^{4} a$

[^0]toluene which were unsuitable for X-ray analysis, agreed excellently with the unsolvated formula.

The crystal used for the intensity determination was of dimensions $0.24 \times$ $0.12 \times 0.12 \mathrm{~mm}$. Intensities of 4174 unique reflections ($2 \theta<45^{\circ}$) were measured using graphite-monochrated $\mathrm{Mo} K_{\alpha}$ radiation by a $\omega-2 \theta$ scan at room temperature. 2475 reflections with $I \geqslant 2 \sigma(I)$ were used for the structure deter-

TABLE 2
THERMAL PARAMETERS (X $\left.10^{3}\right)^{a}$

Atom	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
Ti(1)	26.6(9)	32.5(9)	32.8(8)	1.0(7)	$1.8(7)$	1.4(7)
Ti(2)	28.7(9)	27.6(9)	38.6(9)	-0.2(7)	3.9(7)	0.4(7)
C(1)	29(5)	31(5)	32(5)	$-5(4)$	-1(4)	1(4)
C(2)	36(5)	28(5)	30(5)	-1(4)	-1(4)	-3(4)
O(1)	29(3)	40(3)	42(3)	-3(3)	6(3)	7(3)
O(2)	36(3)	27(3)	48(4)	3(3)	7(3)	$0(3)$
O(3)	46(4)	31(3)	40(3)	3(3)	8(3)	7(3)
O(4)	37(3)	31(3)	45(4)	0 (2)	12(3)	5(3)
C(10)	53(6)	62(7)	54(6)	-10(5)	-23(6)	16(6)
C(11)	32(6)	100(9)	51(6)	6(6)	-10(5)	-28(6)
C(12)	50(6)	$37(6)$	88(8)	-8(5)	-24(6)	-5(6)
C(13)	27(5)	65(7)	58(7)	-7(5)	5(5)	-4(6)
C(14)	38(6)	$69(8)$	68(7)	14(5)	-18(5)	-17(6)
C(15)	63(7)	67(7)	49(6)	16(6)	-22(6)	-21(5)
C(16)	77(7)	59(8)	48(6)	-28(6)	12(5)	-21(6)
C(17)	68(9)	46(6)	53(6)	14(6)	1(6)	-16(5)
C(18)	52(6)	71(8)	54(6)	-6(6)	11(5)	-12(6)
C(19)	90(9)	39(6)	47(5)	-4(7)	6(6)	$9(5)$
C(20)	37(6)	41(8)	103(11)	-12(6)	-18(7)	5(8)
C(21)	28(6)	153(12)	67(8)	12(6)	6(5)	-22(8)
C(22)	59(7)	44(7)	133(12)	20(6)	-31(8)	-4(8)
C(23)	43(8)	107(8)	49(7)	-4(6)	-8(6)	21 (6)
C(24)	39(7)	58(11)	73(8)	3(6)	-17(6)	-14(7)
C(25)	64(7)	42(6)	60(7)	-16(5)	12(6)	-3(5)
C(26)	47(6)	60(7)	52(6)	-8(5)	O(5)	-22(5)
C(27)	G4(8)	52(8)	61(6)	6(6)	-20(6)	-8(5)
C(28)	75(8)	47(8)	42(5)	-21(6)	8(5)	$-9(5)$
C(29)	50(6)	61(6)	68(7)	5(5)	28(5)	-3(6)
Ti(3)	28.0(9)	35.2(9)	35.0(9)	-3.5(7)	-3.2(7)	$-0.8(7)$
C(3)	37(5)	32(5)	29(5)	8(4)	2(4)	2(4)
O(5)	27(4)	57(4)	38(3)	-7(3)	-3(3)	2(3)
O(6)	31(3)	55(4)	36(4)	-2(3)	3(2)	0(3)
C(30)	192(21)	135(15)	105(11)	-125(14)	83(13)	-63(10)
C(31)	84(9)	87(8)	285(18)	58(7)	-134(11)	-129(11)
C(32)	191(20)	58(7)	38(7)	-44(10)	30(9)	-16(6)
C(33)	50(6)	51(7)	127(i1)	4(6)	-15(7)	$-30(7)$
C(34)	96(15)	52(8)	116(11)	4(9)	-10(12)	13(7)
C(35)	61(7)	53(7)	113(11)	-16(6)	20(8)	20(8)
c(36)	106(10)	35(7)	94(9)	-13(6)	-53(8)	3(6)
C(37)	95(9)	49(7)	55(7)	20(6)	-6(6)	-8(5)
C(38)	58(6)	47(7)	72(8)	14(5)	-17(6)	-5(6)
C(39)	107(13)	43(6)	49(6)	22(8)	-3(8)	9(5)
O(40)	135(20)	184(16)	105(14)	0	-31(14)	0
C(41)	242(28)	105(51)	125(21)	29(32)	94(20)	-52(29)
C(42)	288(37)	321 (31)	159(28)	164(26)	-37(25)	43(23)

a T.F. $=\exp \left[-2 \pi^{2}\left(U_{11} h^{2} a^{* 2} \div U_{22} k^{2} b^{* 2}+U_{33} l^{2} c^{* 2}+2 U_{12} h k a^{*} b^{*}+2 U_{13} h l a^{*} c^{*}+2 U_{23} k l b^{*} c^{*}\right)\right]$.
Estimated standard deviations in parentheses.
mination. No absorption correction was applied since $\mu=0.77 \mathrm{~mm}^{-1}$.
The structure solution using the NRC [4] and XRAY 76 [5] programmes, and with scattering factors (corrected for the real and imaginary parts of the anomalous dispersion) taken from International Tables [6] proceeded normally to an $R_{1}\left(\Sigma|\Delta F| / \Sigma\left|F_{\mathrm{o}}\right|\right)$ of 0.10 . At this stage a difference synthesis revealed the presence of atoms extraneous to the $\left[\left(\mathrm{Cp}_{2} \mathrm{Ti}_{2}\right)_{2}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)\right]$, of which there are two molecules in the asymmetric unit, one in a general position and one with a two-fold axis of symmetry in the centre of the $\mathrm{C}-\mathrm{C}$ bond of the $\mathrm{C}_{2} \mathrm{O}_{4}$ ligand, perpendicular to the $\mathrm{C}_{2} \mathrm{O}_{4}$ plane. After several rounds of refinement and difference syntheses it was concluded that the extraneous atoms could best be described as one-half of a molecule of ether, $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{O}$ per $\left[\left(\mathrm{Cp}_{2} \mathrm{Ti}\right)_{2}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)\right]$ unit. This description is however only approximate, and the rather high final R values are in part due to the inadequacy of the description. Final refine-. ment, with fixed positional and isotropic thermal parameters for the hydrogen atoms, a fixed occupancy of 0.75 for the $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{O}$ molecule, and anisotropic thermal parameters for all other atoms converged to $R_{1}=0.061$ and $R_{2}[=$ $\left.\left(\Sigma w|\Delta F|^{2} / \Sigma w\left|F_{0}\right|^{2}\right)^{1 / 2}\right]=0.104$. Refinement minimised $\Sigma w(\Delta F)^{2}$, with $w=$ $1 /\left(\sigma(F)^{2}+\mathrm{k} F^{2}\right.$) (a value of 0.005 for k was determined from measurement of the standards). There were no significant trends in the data analysed as a function of $\left|F_{\mathrm{o}}\right|$ and $\sin \theta$. The estimated error in an observation of unit weight was 0.84 electrons. A final difference map had a highest positive peak of $0.81 e^{-3}$ at a distance of $0.75 \AA$ from $\mathrm{C}(13)$ and a lowest negative peak of

TABLE 3
BOND DISTANCES (A) ${ }^{a}$

Bond	Distance	Bond	Distance
Ti(1)-O(1)	$2.167(6)$	$C(25)-C(26)$	$1.39(1)$
Ti(1)-O(2)	$2.150(6)$	$C(26)-C(27)$	$1.42(2)$
Ti(2)-O(3)	$2.175(6)$	$C(27)-C(28)$	$1.40(2)$
Ti(2)-O(4)	$2.158(6)$	$C(28)-C(29)$	$1.41(1)$
$C(1)-O(1)$	$1.253(9)$	$C(29)-C(25)$	$1.41(1)$
$C(1)-O(3)$	$1.250(10)$	Ti(3)-O(5)	$2.146(6)$
$C(1)-C(2)$	$1.543(11)$	$T i(3)-O(6)$	$2.166(6)$
$C(2)-O(2)$	$1.245(9)$	$C(3)-O(5)$	$1.237(10)$
$C(2)-O(4)$	$1.251(10)$	$C(3)-O\left(6^{\prime}\right)$	$1.242(10)$
$C(10)-C(11)$	$1.41(2)$	$C(3)-C\left(3^{\prime}\right)$	$1.535(11)$
$C(11)-C(12)$	$1.43(2)$	$C(30-C(31)$	$1.19(3)$
$C(12)-C(13)$	$1.38(1)$	$C(31)-C(32)$	$1.54(3)$
$C(13)-C(14)$	$1.38(2)$	$C(32)-C(33)$	$1.41(2)$
$C(14)-C(10)$	$1.37(1)$	$C(33)-C(34)$	$1.37(2)$
$C(15)-C(16)$	$1.36(2)$	$C(34)-C(30)$	$1.19(3)$
$C(16)-C(17)$	$1.39(2)$	$C(35)-C(36)$	$1.36(2)$
$C(17)-C(18)$	$1.37(2)$	$C(36)-C(37)$	$1.43(2)$
$C(18)-C(19)$	$1.40(2)$	$C(37)-C(38)$	$1.36(2)$
$C(19)-C(15)$	$1.37(2)$	$C(38)-C(39)$	$1.38(2)$
$C(20)-C(21)$	$1.40(2)$	$C(39)-C(35)$	$1.43(2)$
$C(21)-C(22)$	$1.44(2)$		
$C(22)-C(23)$	$1.35(2)$		
$C(23)-C(24)$	$1.33(2)$		
$C(24)-C(20)$	$1.37(2)$		

[^1]TABLE 4
BOND ANGLES (${ }^{\circ}$)a

Atoms	Angle	Atoms	Angle
$\mathrm{O}(1)-\mathrm{Ti}(1)-\mathrm{O}(2)$	75.8(2)	C(24)-C(20)-C(21)	108.7(1.c)
$\mathrm{Ti}(1)-\mathrm{O}(1)-\mathrm{C}(1)$	114.9(5)	$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{C}(22)$	104.7(1.0)
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	116.1(7)	$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(23)$	107.2(1.1)
$O(1)-C(1)-O(3)$	126.3(7)	C(22)-C(23)-C(24)	110.4(1.1)
$O(3)-C(1)-C(2)$	117.6(7)	C(23)-C(24)-C(20)	109.1(1.0)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{O}(2)$	116.6(7)	C(29)-C(25)-C(26)	107.5(9)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{O}(4)$	$115.7(7)$	C(25)-C(26)-C(27)	108.0(9)
O(2)-C(2)-O(4)	127.7(7)	$\mathrm{C}(26)-\mathrm{C}(27)-\mathrm{C}(28)$	108.3(9)
Ti(1)-O(2)-C(2)	115.3(6)	C(27)-C(28)-C(29)	107.3(9)
$\mathrm{O}(3)-\mathrm{Ti}(2)-\mathrm{O}(4)$	75.9(2)	C(28)-C(29)-C(25)	108.8(9)
Ti(2)-O(3)-C(1)	$113.5(5)$	$\mathrm{O}(5)-\mathrm{Ti}(3)-\mathrm{O}(6)$	75.1(2)
$\mathrm{Ti}(2)-\mathrm{O}(4)-\mathrm{C}(2)$	$115.4(5)$	$\mathrm{Ti}(3)-\mathrm{O}(5)-\mathrm{C}(3)$	116.2(5)
$\mathrm{C}(14)-\mathrm{C}(10)-\mathrm{C}(11)$	109.0(9)	Ti(3)-O(6)-C(3')	115.7(5)
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	107.0(9)	$O(5)-C(3)-O\left(6^{\prime}\right)$	127.7(8)
C(11)-C(12)-C(13)	105.9(9)	$\mathrm{O}(5)-\mathrm{C}(3)-\mathrm{C}\left(3^{\prime}\right)$	116.3(7)
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	110.9(9)	$\mathrm{O}(6)-\mathrm{C}(3)-\mathrm{C}\left(3^{\prime}\right)$	116.0(7)
C(13)-C(14)-C(10)	107.1(9)	C(34)-C(30)-C(31)	118(2)
$\mathrm{C}(19)-\mathrm{C}(15)-\mathrm{C}(16)$	109.7(1.0)	$\mathrm{C}(30)-\mathrm{C}(31)-\mathrm{C}(32)$	108(2)
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	107.6(9)	C(31)-C(32)-C(33)	97(1)
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$	107.7(9)	C(32)-C(33)-C(34)	108(1)
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)$	108.6(9)	C(33)-C(34)-C(30)	109(2)
C(18)-C(19)-C(15)	106.5(9)	C(39)-C(35)-C(36)	107(1)
		C(35)-C(36)-C(37)	108(1)
		$\mathrm{C}(36)-\mathrm{C}(37)-\mathrm{C}(38)$	107(1)
		C(37)-C(38)-C(39)	109(1)
		C(38)-C(39)-C(35)	107(1)

${ }^{a}$ Estimated standard deviations in parentheses.
$-0.58 e^{\AA^{-3}}$ at $0.43 \AA$ from $\mathrm{C}(30)$ (two C atoms of ring F (see below)).
Examination of the terms in the thermal ellipsoids, and of an ORTEP plot of the molecules, showed that the C atoms of one of the six independent rings (atoms $C(30)-C(34)$, Ring E) had large oscillations in the plane of the ring and

Fig. 1. The molecule of $\left[\left(\mathrm{Cp}_{2} \mathrm{Ti}\right)_{2}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)\right]$ which lies in a general position. Hydrogen atoms have been omitted for clarity.

Fig. 2. The molecule of $\left[\left(\mathrm{Cp}_{2} \mathrm{Ti}_{2}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)\right]\right.$ which has a crystallographic two-fold axis passing through the centre of the $C-C$ bond of the $\mathrm{C}_{2} \mathrm{O}_{4}$ ligand, perpendicular to the $\mathrm{C}_{2} \mathrm{O}_{4}$ plane. Hydrogen atoms have been omitted for clarity.
$\mathrm{C}-\mathrm{C}$ bond distances which differed significantly from those in the other rings (see Table 1 and Figure 2). It is clear that this ring is partially disordered. Because of the limited amount of data available and the already unsatisfactory partial presence of a disordered ether molecule of crystallisation it was decided that a more detailed description of the disorder was impossible. The final atomic coordinates and thermal parameters are given in Tables 1 and 2, and bond lengths and angles in Tables 3 and $4 *$. The numbering scheme is shown in Figs. 1 and 2.

Results and discussion

The crystal consists of discrete molecular units of [$\left.\left(\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Ti}_{2}\right)_{2}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)\right]$ with $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{O}$ molecules occupying the cavity formed by four $\left[\left(\mathrm{Cp}_{2} \mathrm{Ti}\right)_{2^{-}}\right.$ $\left.\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)\right]$ units packed approximately at the corners of a square with the $\mathrm{C}-\mathrm{C}$ bond of the $\mathrm{C}_{2} \mathrm{O}_{4}$ ligand perpendicular to the square plane. There are two independent molecules of $\left[\left(\mathrm{Cp}_{2} \mathrm{Ti}\right)_{2} \mathrm{Ti}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)\right]$ in the unit cell, one in a general position and one with a crystallographic two fold axis passing through the centre of the $\mathrm{C}-\mathrm{C}$ bond of the $\mathrm{C}_{2} \mathrm{O}_{4}$ ligand. The two halves of the bridged molecule in the general position show no significant differences from one another, nor from the independent half of the molecule lying on the two-fold axis, if the apparently disordered $C p$ ring E in this latier molecule is ignored. All the non-disordered Cp rings are planar and their distances and angles are identical within experimental error. The $\mathrm{C}_{2} \mathrm{O}_{4}$ bridging ligand is planar within experimental error. It is therefore reasonable to average the dimensions of five Cp rings, and $1.5\left[\mathrm{Ti}\left(\mu-\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)\right) \mathrm{Ti}\right]$ units. The results of such an averaging are collected in Table 5. These average values will be used in further discussion.

[^2]TABLE 5
AVERAGE BOND DISTANCES (A) AND ANGLES (${ }^{\circ}$) IN [(CP2Ti) $\left.\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)\right]$

Ti-O	2.157(6)	6°	$\mathrm{O}-\mathrm{Ti}-\mathrm{O}$	75.8(2)	$3^{\text {a }}$
C-O	1.256(10)	6	$\mathrm{Ti}-\mathrm{O}-\mathrm{C}{ }^{\text {b }}$	114.7(5)	6
$C-C b$	1.523(11)	2	$\mathrm{O}-\mathrm{C}-\mathrm{C}^{\text {b }}$	116.7(7)	6
$\mathrm{Ti}-\mathrm{Cp}{ }^{c}$	2.058(4)	5	O-C-Ob	126.5(7)	3
Ti-C	2.374(11)	25	$\mathrm{C}-\mathrm{C}-\mathrm{c}^{\text {d }}$	108.1(9)	25
$\mathbf{C - C}{ }^{\text {d }}$	1.390(17)	25	$\mathrm{Cp}-\mathrm{Ti}-\mathrm{Cp} \mathrm{C}$	$135.4(3)$	2

a Numbers in this column are the number of independent determinations which have been averaged.
b Distances or angles in the $\mathrm{Ti}\left(\mu-\mathrm{C}_{2} \mathrm{O}_{4}\right) \mathrm{Ti}$ unit.
c Cp refers to the centroid of the η^{5}-cyclopentadienyl zing.
d Distances or angles in the Cp rings.

The $\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{O}$ bond distances and the $\mathrm{O}-\mathrm{C}-\mathrm{O}$ angle in the oxalato group are normal for this ligand acting as a tetradentate bridge [7]. Similarly the Ti -ring carbon distances and $\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{C}-\mathrm{C}$ distances and angles within the rings agree with other determinations of the structures of $\mathrm{Cp}_{2} \mathrm{Ti}^{\mathbf{I I I}}$ complexes [8-12].

There are a number of points of comparative interest within the structure. The Ti atoms are displaced an average of $0.297 \AA(\mathrm{Ti}(1) 0.318 ; \mathrm{Ti}(2) 0.348$; $\mathrm{Ti}(3) 0.225 \AA$) out of the plane of the $\mathrm{C}_{2} \mathrm{O}_{4}$ ligand, in a cis fashion. This distortion in fact results in $\mathrm{H}-\mathrm{H}$ non-bonded contacts between rings A and B in the general position molecule of $2.50 \AA$, and a similar contact of $2.52 \AA$ between rings F and F^{\prime} in the molecule on the two-fold axis. All other $\mathrm{H}-\mathrm{H}$ non-bonded contacts (which are the shortest contacts in the crystal) are close to $2.70 \AA$. The cis folding of the molecule therefore produces unusually close contacts, whereas a trans folding, or a completely planar structure would not do so. We therefore conclude that the electronic structure of the molecule is responsible for the folding. Hoffmann and Lauher [13] have analysed the observed [12,14-17] displacements of the $\mathrm{Cp}_{2} \mathrm{M}$ moiety from the plane of bidentate ligands (ω angles of up to 46° in their notation) in terms of π interaction between the ligand and the $\mathrm{Cp}_{2} \mathrm{M}$ fragment. In the present case the ω angles are 11.89° and 10.86° in the general position molecule and 7.62° in the molecule on the two-fold axis. In Fig. 3 the orbitals involved in the bonding between $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$ and $\mathrm{Cp}_{2} \mathrm{Ti}$ are sketched, the $\mathrm{Cp}_{2} \mathrm{Ti}$ fragment orbitals being taken from Hoffmann and Lauher [13] and the $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$ orbitals being obtained from an INDO/2 calculation using programmes designed by Zerner [18,19]. It is seen that three electrons (one from Ti^{111} and two from the ligand) must be accommodated in the two a_{1} molecular orbitals, one of which forms a σ-bond. The unpaired electron has a repulsive interaction with the ligand, but neither this nor the σ overlap is affected by folding, since the filled a_{1} orbital on the ligand lies essentially completely in the y direction, which is the axis of folding. The overlap of the b_{2} orbitals forming the second σ-bond will be decreased by folding. However, such folding will result in a stabilising interaction between the single electron in an a_{1} orbital and the ligand LUMO b_{1} orbital, both of which transform as a in the \mathcal{C}_{s} symmetry of the folded molecule. Note that cis folding (i.e. the Ti atoms on the same side of $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$ plane) is required by the sym-

Fig. 3. Schematic diagram of the orbitals involved in bonding between $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$ and $\mathrm{Cp}_{2} \mathrm{Ti}^{+}$. In the isolated $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$ orbitals b_{2} and a_{1} are occupied, b_{1} is unoccupied. In the isolated $\mathrm{Cp}_{2} \mathrm{Ti}^{+}$the odd electron would occupy $1 a_{1}$ -
metry of the $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$ LUMO orbital. That the molecule folds indicates that the π-interaction is very important. However, folding is only possible as far as the non-bonded ring contacts will allow, and a compromise between electronic advantage and steric strain is reached.

The average $\mathrm{Ti}-\mathrm{O}$ distance, $2.157(6) ~ \AA$, and the $\mathrm{O}-\mathrm{Ti}-\mathrm{O}$ angle, $75.80(21)^{\circ}$ are in the ranges to be expected for these parameters based on radii and biteangle considerations. Only one other $\mathrm{Cp}_{2} \mathrm{Ti}^{\mathrm{III}}$ complex having $\mathrm{Ti}-\mathrm{O}$ bonds appears to have been structurally analysed, and in this, $\left[\left(\mathrm{Cp}_{2} \mathrm{Ti}\right)_{4}\left(\mathrm{CO}_{3}\right)_{2}\right]$, the reduced bite-angle of the CO_{3} ligand produces an $\mathrm{O}-\mathrm{Ti}-\mathrm{O}$ angle of $61.3(1)^{\circ}$ and a Ti-O distance of $2.128(3) \AA$ [8]. For two monodentate ligands O-bonded to $\mathrm{Cp}_{2} \mathrm{Ti}^{\mathrm{III}}$ and $\mathrm{O}-\mathrm{Ti}-\mathrm{O}$ angle of about $85^{\circ} \mathrm{C}$ and a $\mathrm{Ti}-\mathrm{O}$ distance of circa $2.19 \AA$ would be expected.

It is interesting to compare the present structure with that of $\left[\left(\mathrm{Cp}_{2} \mathbf{T i}\right)_{2}-\right.$ $\left(\mathrm{C}_{2}\left(\mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}-p\right)_{4}\right.$] [9]. The bridging $\mathrm{C}_{2}\left(\mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}-p\right)_{4}$ ligand is isoelectronic with $\mathrm{C}_{2} \mathrm{O}_{4}$, and its titanium complex can be regarded as a model for the reductive coupling of CO_{2} to $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$, since it was obtained in the reaction between $\mathrm{Cp}_{2} \mathrm{Ti}(\mathrm{CO})_{2}$ and $p-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{N}=\mathrm{C}=\mathrm{NC}_{6}-\mathrm{H}_{4} \mathrm{CH}_{3}-p$ [9]. The Ti-N
distances, $2.176(2)$ and $2.173(2) \AA$, differ from the average $\mathrm{Ti}-\mathrm{O}$ distance in $\left[\left(\mathrm{Cp}_{2} \mathrm{Ti}\right)_{2}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)\right], 2.157(6) \AA$, by exactly the difference in the covalent radii of N and O , and the $\mathrm{N}-\mathrm{Ti} \mathrm{N}$ angle of $\mathbf{7 3 . 6 (1) ^ { \circ }}$ is very similar to the $\mathrm{O}^{-\mathrm{Ti}-\mathrm{O}}$ angle ($75.8(2)^{\circ}$). However, the average $\mathrm{Ti}-\mathrm{Cp}$ distances and $\mathrm{Cp}-\mathrm{Ti}-\mathrm{Cp}$ angles (2.058(4) \AA and $135.4(3)^{\circ}$ for $\left[\left(\mathrm{Cp}_{2} \mathrm{Ti}_{2}\right)_{2}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)\right]$ and 2.095(4) and $131.6(2)^{\circ}$ for $\left[\left(\mathrm{Cp}_{2} \mathrm{Ti}_{2}\right)_{2}\left(\mathrm{C}_{2}\left(\mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}-p\right)_{4}\right]\right)$ are significantly different and appear to indicate that $\mathrm{C}_{2} \mathrm{O}_{4}$ is a better σ and/or π donor than $\mathrm{C}_{2}\left(\mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}-p\right)$ in these complexes. This is probably due to the removal of electrons from the nitrogen atoms by delocalisation into the tolyl rings in $\mathrm{C}_{2}\left(\mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{CH}_{3} \text {-p }\right)_{4}$.

Acknowledgements

> We thank the Natural Sciences and Engineering Research Council of Canada for financial support of this work.

References

1 F. Bottomley, I.J.B. Lin and M. Mukaida. J. Amer. Chem. Soc., 102 (1980) 5238.
2 F. Bottomley, J. Darkwa, I.J.B. Lin, M. Mukaida, M. Tong and P.S. White, to be published.
3 M.L.H. Green and C.R. Lucas, J. Chem. Soc. Dalton Trans., (1972) 1000.
4 E.J. Gabe, A.C. Larson, F.L. Lee, Y. Wang and Y. LePage, The NRCC PDP8/E Crystal Structure System, personal communication.
5 J.M. Stewart, ed., The X-Ray System; Technical Feport TR 446, Computer Science Center, University of Maryland, 1976.
6 International Tables for X-ray Crystallography, Vol. IV, Kynoch Press, Birmingham 19 74.
7 T.R. Felthouse, E.J. Laskowski, and D.N. Hendrickson, Inorg. Chem., 16 (1977) 1077.
8 G. Fachinetti, C. Floriani, A. Chiesi-Villa and C. Guastini, J. Amer. Chem. Soc., 101 (1979) 1767.
9 M. Pasquali, C. Floriani, A. Chiesi-Villa and C. Guastini, J. Amer. Chem. Soc., 101 (1979) 4739.
10 R. Jungst. D. Sekutowski, J. Davis, M. Luly and G. Stucky, Inorg. Chem., 16 (1977) 1645.
11 J.L. Peterson. D.L. Lichtenberger. R.F. Fenske and L.F. Dahl, J. Amer. Chem. Soc. 97 (1975) 6433.
12 B.F. Fieselmann and G.D. Stucky, Inorg. Chem., 17 (1978) 2074.
13 J.W. Lauher and R. Hoffmann, J. Amer. Chem. Soc., 98 (1976) 1729.
14 A. Kutoglu, Z. Anorg. Allgem. Chem., 390 (1972) 195.
15 A. Kutoglu, Acta Cryst., B29 (1973) 2891.
16 A. Kutoglu and H. Köpf, J. Organometal. Chem., 25 (1970) 455.
17 T. Debaerdemaeker and A. Kutoglu, Acta Cryst.. B29 (1973) 2664.
18 J. Kidley and M.C. Zerner, Theor. Chim. Acta, 32 (1973) 111.
19 A.D. Bacon and M.C. Zerner, Theor. Chim. Acta, 53 (1979) 21.

[^0]: ${ }^{\alpha}$ Estimated standard deviations in parentheses.
 b Population of these sites set to 3/4.

[^1]: a Estimated standard deviations in parentheses.

[^2]: * Supplementary material has found deposited with NAPS. Order from NAPS c/o Microfiche Publications, P.O. Box 3513, Grand Central Station. New York, N.Y. 10017. Remit in advance, in U.S. funds only $\$ 5.00$ for photocopies of $\$ 3.00$ for microfiche. Outside the U.S. and Canada add postage of $\$ 3.00$ for photocopy and $\$ 1.00$ for microfiche.

